1 a

- ${f b}$ The ellipse increases in size and becomes more narrow as ${m e}$ is increased.
- 2 a To help sketch this curve we first graph the function

$$r = 1 - \sin \theta$$

as shown below. This allows us to see how r changes as θ increases.

Note that:

- **b** As angle θ increases from 0 to $\pi/2$, the radius r decreases from 1 to 0.
- **c** As angle θ increases from $\pi/2$ to π , the radius r increases from 0 to 1.
- **d** As angle θ increases from π to $3\pi/2$, the radius r increases from 1 to 2.
- **e** As angle θ increases from $3\pi/2$ to 2π , the radius r decreases from 2 to 1.

This gives the graph shown below. The points are labelled using polar coordinates.

as required.

3 a To help sketch this curve we first graph the function $r = \cos 3\theta$ as shown below. This allows us to see how r changes as θ increases.

Note that:

- **b** As angle θ increases from 0 to $\pi/6$, the radius r varies from 1 to 0.
- **c** As angle θ increases from $\pi/6$ to $\pi/3$, the radius r varies from 0 to -1.
- **d** As angle θ increases from $\pi/3$ to $\pi/2$, the radius r varies from -1 to 0.

Continuing in this manner, we obtain the following graph shown below. Note that the labelled points are polar coordinates.

b To help sketch this curve we first graph the function

$$r = \cos 3\theta$$

as shown below. This allows us to see how r changes as θ increases.

- **c** As angle θ increases from 0 to $\pi/6$, the radius r varies from 0 to 1.
- **d** As angle θ increases from $\pi/6$ to $\pi/3$, the radius r varies from 1 to 0.

Continuing in this manner, we obtain the following graph shown below. Note that the labelled points are polar coordinates.

4 a To help sketch this curve we first graph the function $r = \sin 2\theta$ as shown below. This allows us to see how r changes as θ increases.

Using numbers, we have labelled how each section of this graph corresponds to a each section in the rose below. Note that the labelled points are polar coordinates.

b Since $\sin 2\theta = 2 \sin \theta \cos \theta$, we have

$$egin{aligned} r &= \sin 2 heta \ r &= 2\sin heta \cos heta \ r^3 &= 2\cdot r\sin heta \cdot r\cos heta \ r^3 &= 2xy \ \dfrac{3}{2} &= 2xy \ (x^2+y^2)^{\dfrac{3}{2}} &= 2xy \ (x^2+y^2)^3 &= 4x^2y^2, \end{aligned}$$

as required.

5 a

Note that we can find the x-intercepts by letting $\theta=0$ and $\theta=\pi$. This gives $x=\pm\sqrt{2}$.

b Since
$$\cos 2\theta = \cos^2 \theta + \sin^2 \theta$$
, we have

$$egin{aligned} r^2 &= 2\cos 2 heta \ r^2 &= 2(\cos^2 heta - \sin^2 heta) \ r^2 &= 2\cos^2 heta - 2\sin^2 heta \ r^2 &= 2\Big(rac{x}{r}\Big)^2 - 2\Big(rac{y}{r}\Big)^2 \ r^2 &= 2rac{x^2}{r^2} - 2rac{y^2}{r^2} \ r^4 &= 2x^2 - 2y^2 \ \Big(\sqrt{x^2 + y^2}\Big)^4 = 2x^2 - 2y^2 \ (x^2 + y^2)^2 &= 2x^2 - 2y^2 \end{aligned}$$

c If $d_1d_2=1$ then using the distance formula, we find that

$$\sqrt{(x-1)^2+y^2}\sqrt{(x+1)^2+y^2}=1$$
 $[(x-1)^2+y^2][(x+1)^2+y^2]=1$
 $(x-1)^2(x+1)^2+(x-1)^2y^2+(x+1)^2y^2+y^4=1$
 $(x^2-1)^2+[(x-1)^2+(x+1)^2]y^2+y^4=1$
 $(x^2-1)^2+(2x^2+2)y^2+y^4=1$
 $x^4-2x^2+1+2x^2y^2+2y^2+y^4=1$
 $x^4+2x^2y^2+y^4-2x^2+2y^2=0$
 $(x^2+y^2)^2-2x^2+2y^2=0$

Therefore,

$$(x^2 + y^2)^2 = 2x^2 - 2y^2$$
,

which is the same equation as that found previously.